万维百科

欧姆定律

欧姆定律的参数是

电路学里,欧姆定律(英语:Ohm's law)表明,导电体两端的电压与通过导电体的电流成正比[1],以方程表示,

其中,是电压(也可以标记为,方程表示为),是电流,比例常数电阻

虽然导电体是由导电物质组成,导电体也具有微小的电阻。对于任意导电体、电阻器电路元件电路等等,电阻的定义方程为:[1]

不论电流、电压为何,电阻定义为电压除以电流。在欧姆定律里,电阻与电流、电压无关。并不是每一种元件都遵守欧姆定律。欧姆定律是经过多次实验而推断的法则,只有在理想状况下,才会成立。凡是遵守欧姆定律的元件或电路都称为“欧姆元件”或“欧姆电路”或“欧姆式导体”,其电阻与电流、电压无关;不遵守欧姆定律的元件或电路称为“非欧姆元件”或“非欧姆电路”或“非欧姆式导体”,其电阻可能会与电流、电压有关。常见的非欧姆元件包括电动机变压器,其带电部分是线圈,电阻很小。理想变压器的电阻则等于零,这样根据欧姆定律,电流是无限大,因此只能存在于极少状态下,例如超导体,因为其原子核中的电子没有任何震动电子可以顺畅的流过去而没有任何阻碍。[来源请求]

欧姆定律是因德国物理学家格奥尔格·欧姆命名。于1827年,在他发表的一本通论《直流电路的数学研究》(The galvanic Circuit investigated mathematically)里[2],他详细的论述简单电路两端的电压与流动于电路的电流之间的关系。他所论述的关系比较复杂,稍后会有更详细说明。上述方程乃是欧姆定律的现代版本。

对于电阻物质或导电物质,欧姆定律可以推广为:

其中,电场是物质的电流密度是物质的电阻率是物质的电导率

遵守欧姆定律的物质,称为“欧姆物质”,其电阻率和电导率与电流密度、电场无关[1]

历史

格奥尔格·欧姆。

早于1753年,意大利物理学家乔凡尼·贝卡立亚(Giovanni Beccaria)就在研究物质的导电性质。他在电路里加装了盛满了水的玻璃管。当开启电路后,发现玻璃管的截面面积越大,电流的放电强度越大[3]

英国物理学家亨利·卡文迪什也曾做过很多实验,研究电动势、电流、电阻之间的关系。他使用莱顿瓶为电流源,将电流通过在各种尺寸的玻璃试管里盛装的盐溶液,靠着调整盐溶液的高度,他可以控制放电强度。卡文迪什把自己身体当作一台生理检流计,从亲身体验被电击后的感觉,来估计电流的放电强度。他又选择出一个装满盐溶液的玻璃试管为标准,然后比较标准放电与试样放电,按照放电强度的大小来估计它们的电阻。这样,他可以定量地描述每一种试样。于1781年1月,他记录在笔记里,电流与电动势成正比。但是,他并没有将这些珍贵的实验结果告诉任何科学家。一直到麦克斯韦于1879年替他编辑注释为著作《卡文迪什的电学研究》(The electrical researches of the Honourable Henry Cavendish)后,才见诸世面[4][5]。注意到卡文迪什使用的仪器相当原始粗陋,靠身体感觉很难做出精准的测量,莱顿瓶并不是稳定电流源。所以,学术界认为这耽搁了近百年的实验结果并不足以证实欧姆定律。

从1825年到1826年之间,欧姆做了很多关于电阻的实验。于1827年,他将得到的结果一同发表在著作《直流电路的数学研究》(The galvanic Circuit investigated mathematically)里[6]。他从傅里叶对于热传导的研究得到了相当多的灵感,借用了很多傅里叶的点子来论述自己的结果。

欧姆是一位优秀的实验者,很会设计与制造实验设备,又具有精湛的数学修养与严谨的敬业态度。刚开始,他使用伏打电堆为电源,用安装于扭秤(torsion balance)的磁针来测量电流的磁场力。载流导线的电流所产生的磁场与电流成正比,只要测量在载流导线附近的磁针所感受到的磁场力,就可以知道电流。他将电流通过不同长度的检验电线;由于长度不同,电阻也不同。欧姆仔细分析实验结果,得到经验方程[7] [8]

其中,是检验电线造成的电流差值,是跟实验参数有关的系数,是检验电线的长度,是跟固定长度的载流导线有关的常数。

欧姆的实验设备。由于温差,热电偶会产生电动势,促成电流流动于电阻电路。这电流又会产生磁场,使得固定于扭秤的磁针偏转。从读取磁针偏转的角度,就可以知道电流。

欧姆很快地就觉得这方程不太对劲。大约三年前,汤玛斯·泽贝克(Thomas Seebeck)发明使用热电偶为电源。这种电源比伏打电源稳定。采纳《物理与化学年鉴》的总编辑约翰·波根多夫(Johann poggendorff)的建议,欧姆改用热电偶为电源[9][10],将实验重做一遍,得到经验方程:

其中,是扭秤读值,是跟电动势有关的常数,是跟内部电阻有关的常数,是检验电线的长度。

仔细诠释这些变量,将分别诠释为电流、电压、内部电阻、检验电阻,那么,假定总电阻则经验方程变为欧姆定律的现代方程版本:

欧姆定律可能是早期电学史最重要的定量理论。但是,当欧姆最初发表他的结果时,很多学术界同仁都激烈地批评反对他的理论。德国教育部长指责:“鼓吹这种异端邪说的教授不配教导科学[11]。”物理教授格奥尔格·魄尔(Georg Pohl)这样批评欧姆的著作:“以崇高眼光仰看这世界的人士,必须远离这本无可救药、妄生穿凿的谬书,其唯一目的乃是彻底诋毁大自然的尊严[7]。”。那时候,德国正盛行的黑格尔哲学认为,因为大自然井井有序,而且只要经过合理推论就可获得科学真理,所以,并不需要靠做实验来了解大自然。欧姆的实验方法可能引起了黑格尔门徒的强烈反感。

1839年,法国物理学家,克劳德·普雷特(Claude Pouillet)确定欧姆的实验结果。同时,欧姆成为柏林科学院的院士。在英国,查尔斯·惠斯通Charles Wheatstone)又重新核对了欧姆的实验结果。1841年,欧姆被选为皇家学会的外籍会员。1852年,欧姆荣膺为慕尼黑大学的物理学系主任。

于1920年,物理学家发现,通过理想电阻器的电流会出现统计涨落,虽然当电压和电阻为常数时,统计涨落会跟温度有关。这种涨落称为詹森-奈奎斯特噪音(Johnson–Nyquist noise),是因为电荷的离散秉性而产生的现像。这热效应意味着,假若取样的时间间隔足够短暂,电流或电压的测值,其比例跟时间平均比例或系综平均(ensemble average)比例相比较,会出现涨落;也就是说,每一个电阻的取样值,跟的时间平均或系综平均相比较,会出现涨落。对于普通电阻物质案例,经过平均程序后,欧姆定律仍旧正确无误。

欧姆对于电阻的研究在麦克斯韦方程组出现之前很久,那时科学家对于交流电路的频率相关效应也不了解。但是,在适当范围内,现代电磁理论与现代电路理论并没有发现任何与欧姆定律相悖之处。

水力学类比

欧姆定律可以用水力学类比(hydraulic analogy)来描述。测量单位为帕斯卡的水压,可以类比为电压。在一根水管里,由于任意两点之间的水压差会造成水流,水的流速(单位是每秒),可以类比为电流(单位是库仑每秒)。“流量限制器”是安装于水管与水管之间控制流量的阀门,可以类比为电阻器。通过流量限制器的水流流量,跟流量限制器两端的水压成正比,类似地,通过电阻器的电荷流量(电流),跟电阻器两端的电压成正比。这正是欧姆定律的论述。

流体流动网络的流量和流压可以用水力学类比方法来计算[12][13]。这方法可以应用于稳定流和暂态流(transient flow)。对于线性层流泊肃叶定律Poiseuille's law)描述水管的水阻,但是对于湍流,流压-流量关系变为非线性。

热力学类比

设定导电体的电导率与两端的电压,欧姆定律可以预测出通过这导电体的电流密度。类似地,设定导热体的热导率与两端的温差,约瑟夫·傅里叶热传导定律可以预测通过这导热体的热流[14]。同样的方程形式可以描述这两种现象。对于每一种案例,方程的变量有不同的意义。具体而言,欧姆定律的方程为:

而热传导定律的方程为:

其中,热通量heat flux),是导热体的热导率,是温度。

思考参数为温度、热导率与热通量的热传导问体,和参数为电压、电导率与电流密度的电传导问体。这两个问题相互等价。假若能够解析一个热传导问体,则也能够解析电传导问题;反之亦然。

电路分析

电路学里,电阻器(欧姆电阻器)是一种电路元件,其电阻与电压、电流无关。电阻器可以按照欧姆定律阻抗电荷的通过。每一个电阻器都有其设计制成的电阻。更严格地说,电阻器是在某操作域内遵守欧姆定律的电路元件;欧姆定律和唯一电阻值足够描述这元件在相关操作域的行为。

串联电阻电路

个电阻器串联形成的电路。

串联电阻的总电阻等于各个电阻之和,以方程表示,

其中,是第个电阻,是总电阻。

假设在电路两端的电压为,则通过的电流为。假设每一个电阻器都遵守欧姆定律,则这电路是电阻为的欧姆电路。

并联电阻电路

个电阻器并联形成的电路。

相互并联的电阻,其总电阻的倒数等于其每个电阻的倒数和,以方程表示:

假设在电路两端的电压为,则通过的电流为。假设每一个电阻器都遵守欧姆定律,则这电路是电阻为的欧姆电路。

周期性激发

电容器电感器传输线等等,都是电路的电抗元件。假设施加周期性电压或周期性电流于含有电抗元件的电路,则电压与电流之间的关系式变成微分方程。因为欧姆定律的方程只涉及实值的电阻,不涉及可能含有电容电感的复值阻抗,所以,前面阐述的欧姆定律不能直接应用于这状况。

最基本的周期性激发,像正弦激发或余弦激发,都可以用指数函数来表达:

其中,虚数单位是实值角频率时间

假设周期性激发为单频率正弦激发,其角频率为。电阻为的电阻器,其阻抗为:

电感为的电感器,其阻抗为:

电容为的电容器,其阻抗为:

电压与电流的关系式为:

注意到将阻抗替代电阻,就可以得到这欧姆定律方程的推广。只有的实值部分会造成热能的耗散。

对于这系统,电流和电压的复值波形式分别为:

电流和电压的实值部分分别描述这电路的真实正弦电流和正弦电压。由于都是不同的复值标量,电流和电压的相位可能会不一样。

周期性激发可以傅里叶分解为不同角频率的正弦函数激发。对于每一个角频率的正弦函数激发,可以使用上述方法来计算响应。然后,将所有响应总和起来,就可以得到解答。

线性近似

电流对电压线图。理想电阻器和PN接面二极管的V-I线分别以红色和黑色显示。

欧姆定律是电路分析circuit analysis)使用的几个基本方程之一。它可以应用于金属导电体或特别为这行为所制备的电阻器。在电机工程学里,这些东西无所不在。遵守欧姆定律的物质或元件称为“欧姆物质”或“欧姆元件”。理论上,不论施加的电压或电流、不论是直流或交流、不论是正极或负极,它们的电阻都不变[15]

但是,有些电路元件不遵守欧姆定律,它们的电压与电流之间的关系(V-I线)乃非线性关系。PN接面二极管是一个显明范例。如右图所示,随着二极管两端电压的递增,电流并没有线性递增。给定外电压,可以用V-I线来估计电流,而不能用欧姆定律来计算电流,因为电阻会因为电压的不同而改变。另外,只有当外电压为正值时,电流才会显著地递增;当施加的电压为负值时,电流等于零。对于这类元件,V-I线的斜率,称为“小信号电阻”(small-signal resistance)、“增量电阻”(incremental resistance)或“动态电阻”(dynamic resistance),定义为

单位也是欧姆,是很重要的电阻量,适用于计算非欧姆元件的电性[16]

温度效应

詹姆斯·麦克斯韦诠释欧姆定律为,处于某状态的导电体,其电动势与产生的电流成正比。因此,电动势与电流的比例,即电阻,不会随着电流而改变。在这里,电动势就是导电体两端的电压。参考这句引述的上下文,修饰语“处于某状态”,诠释为处于常温状态,这是因为物质的电阻率通常跟温度有关。根据焦耳定律,导电体的焦耳加热Joule heating)与电流有关,当传导电流于导电体时,导电体的温度会改变。电阻对于温度的相关性,使得在典型实验里,电阻跟电流有关,从而很不容易直接核对这形式的欧姆定律。于1876年,麦克斯韦与同事,共同设计出几种测试欧姆定律的实验方法,能够特别凸显出导电体对于加热效应的响应[17]

其它版本的欧姆定律

电机工程学电子工程学里,欧姆定律妙用无穷,因为它能够在宏观层次表达电压与电流之间的关系,即电路元件两端的电压与通过的电流之间的关系。在物理学里,对于物质的微观层次电性质研究,会使用到的欧姆定律,以矢量方程表达为:

处于均匀外电场的均匀截面导电体(例如,电线)。

在导体内任意两点g、h,定义电压为将单位电荷从点g移动到点h,电场力所需做的机械功[18]

其中,是电压,是机械功,是电荷量,是微小线元素。

假设,沿着积分路径,电流密度为均匀电流密度,并且平行于微小线元素:

其中,是积分路径的单位矢量。

那么,可以得到电压:

其中,是积分路径的径长。

假设导体具有均匀的电阻率,则通过导体的电流密度也是均匀的:

其中,是导体的截面面积。

电压简写为。电压与电流成正比:

总结,电阻与电阻率的关系为:

假设,则;将单位电荷从点g移动到点h,电场力需要作的机械功。所以,点g的电势比点h的电势高,从点g到点h的电势差为。从点g到点h,电压降是;从点h到点g,电压升是

给予一个具有完美晶格晶体,移动于这晶体的电子,其运动等价于移动于自由空间的具有有效质量effective mass)的电子的运动。所以,假设热运动足够微小,周期性结构没有偏差,则这晶体的电阻等于零。但是,真实晶体并不完美,时常会出现晶体缺陷crystallographic defect),有些晶格点的原子可能不存在,可能会被杂质侵占。这样,晶格的周期性会被扰动,因而电子会发生散射。另外,假设温度大于绝对温度,则处于晶格点的原子会发生热震动,会有热震动的粒子,即声子,移动于晶体。温度越高,声子越多。声子会与电子发生碰撞,这过程称为晶格散射(lattice scattering)。主要由于上述两种散射,自由电子的流动会被阻碍,晶体因此具有有限电阻[19]

凝聚态物理学研究物质的性质,特别是其电子结构。在凝聚态物理学里,欧姆定律更复杂、更广义的方程非常重要,属于本构方程(constitutive equation)与运输系数理论(theory of transport coefficients)的范围。

经典微观表述

在德鲁德模型里,电子(以蓝色表示)不停地在固定不动的导电体离子(以红色表示)之间移动与碰撞。假若施加电场于导电体,则电子的平均移动速度(称为漂移速度)不等于零。电子的漂移速度方向与电场方向相反。

当施加外电场于导电体时,电流密度的响应,基本上是属于量子力学性质。详尽细节,请参阅经典与量子电导率(classical and quantum conductivity)。保罗·德鲁德于1900年研究出的德鲁德模型,可以用经典物理解释欧姆定律,描述自由电子移动于金属导电体的物理行为[20] [21]

在德鲁德模型里,自由电子会不停地移动碰撞于固定不动、组成整个金属导电体晶格的正价离子之间。金属里的每一个自由电子,感受到电场力的作用,会呈加速运动。但是每当自由电子与晶格发生碰撞,其动能会遭受损失,以热能的形式将能量释放给离子,所以,电子的平均移动速度是漂移速度,其漂移速度的方向与电场方向相反。

电子感受到的平均电场力为:

其中,是平均电场,是单位电荷量。

德鲁德计算出漂移速度为:

其中,是平均自由时间(mean free time),是碰撞之间的平均时间间隔,是电子的质量

在金属里,电荷载子为电子,所以电流密度与漂移速度的关系为:

其中,是电子密度。

假设电场是均匀电场,,设定电阻率为:

则电场与电流密度的关系为:

注意到漂移速率超小于热速率

其中,玻尔兹曼常数温度

因此,平均自由时间与热速率有关,与漂移速率无关,所以平均自由时间也与电流密度、电场无关。质量、电子密度、单位电荷,都与电流密度、电场无关。总结,电阻率与电流密度、电场无关。

磁效应

前面得到的答案只成立于导电体的参考系。在经典电磁学里,假设处于磁场的导电体,以相对速度移动于磁场的参考系,则电子感受到的平均洛伦兹力为:

漂移速度为:

电场与电流密度的关系为:

所以,欧姆定律的形式推广为:

参阅

参考文献

  1. ^ 1.0 1.1 1.2 Halliday, David; Robert Resnick, Jearl Walker, Fundamental of Physics 7th, USA: John Wiley and Sons, Inc.: pp. 691–692, 2005, ISBN 0-471-23231-9
  2. ^ 欧姆, 格奥尔格, The Galvanic Circuit Investigated Mathematically, New York: D. Van Nostrand Company, 1891
  3. ^ Whittaker, E. T., A history of the theories of aether and electricity. Vol 1, Nelson, London: pp. 53, 1951
  4. ^ Electricity, Encyclopedia Britannica, 1911, (原始内容存档于2008-09-15)
  5. ^ Sanford P. Bordeau (1982) Volts to Hertz...the Rise of Electricity. Burgess Publishing Company, Minneapolis, MN. pp.86–107, ISBN 978-0-8087-4908-0
  6. ^ G. S. Ohm, The galvanic Circuit investigated mathematically, D. Van Nostrand Company, 1891
  7. ^ 7.0 7.1 Hammond, P., Georg Simon Ohm and his law (PDF), Jounal of the Institution of Electrical Engineers, June 1958, 4 (42): pp. 294–296[永久失效链接]
  8. ^ Gupta, Madhu Sudan, Georg Simon Ohm and Ohm's Law, IEEE Transactions on Education, Aug 1980, 23 (3): pp. 156–162
  9. ^ Shedd, John C.; Hershey, Mayo D., The History of Ohm's Law, Popular Science Monthly (Bonnier Corporation), 1913: pp. 599ff
  10. ^ Keithley, Joseph F., The story of electrical and magnetic measurements: from 500 B.C. to the 1940s, John Wiley and Sons: pp.93ff, 102, 1999, ISBN 9780780311930
  11. ^ Pickover, Clifford, Archimedes to Hawking: laws of science and the great minds behind them, U.S.A.: Oxford University Press: pp. 8, 2008, ISBN 9780195336115
  12. ^ A. Akers, M. Gassman, & R. Smith. Hydraulic Power System Analysis. New York: Taylor & Francis. 2006: Chapter 13. ISBN 0-8247-9956-9.
  13. ^ A. Esposito, "A Simplified Method for Analyzing Circuits by Analogy", Machine Design, October 1969, pp. 173–177.
  14. ^ 傅里叶, 约瑟夫, The Analytical Theory of Heat, Cambridge University Press, 2009 [1878], ISBN 978-1-108-00178-6
  15. ^ Hughes, E, Electrical Technology, pp10, Longmans, 1969.
  16. ^ Horowitz, Paul; Winfield Hill. The Art of Electronics 2nd. Cambridge University Press. 1989: 13. ISBN 0-521-37095-7.
  17. ^ Normal Lockyer (编). Reports. Nature (Macmillan Journals Ltd). September 21, 1876, 14: 452.
  18. ^ Alexander, Charles; Sadiku, Matthew, fundamentals of Electric Circuits 3, revised, McGraw-Hill: pp. 9–10, 2006, ISBN 9780073301150
  19. ^ Seymour J, Physical Electronics, pp 48–49, Pitman, 1972
  20. ^ Drude, Paul. Zur Elektronentheorie der metalle. Annalen der Physik. 1900, 306 (3): 566. doi:10.1002/andp.19003060312.[永久失效链接]
  21. ^ Drude, Paul. Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Annalen der Physik. 1900, 308 (11): 369. doi:10.1002/andp.19003081102.[永久失效链接]

本页面最后更新于2021-06-29 16:41,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器