万维百科

欧几里得本文重定向自 欧几里得

欧几里得
Ευκλειδης
Euklid-von-Alexandria 1.jpg
出生公元前325年
逝世公元前265年(59-60岁)
居住地埃及亚历山大里亚
知名于欧几里得几何
几何原本
科学生涯
研究领域数学

欧几里得希腊语Ευκλειδης古希腊语Εὐκλείδης,前325年-前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得[1]希腊化时代数学家,被称为“几何学之父”。他活跃于托勒密一世时期[2]亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公设,成为欧洲数学的基础。[3][4][5]欧几里得也写过一些关于透视圆锥曲线球面几何学数论的作品。欧几里得几何被广泛的认为是数学领域的经典之作。

生平资料

欧几里得(Euclid)是希腊文Εὐκλείδης 的英化名字,意思是“好的名誉”。欧几里得生前活跃于亚历山大图书馆,而且很有可能曾在柏拉图学院学习。直到现在都无法得知欧几里得的生卒日期、地点和细节。直到现在,还没有找到任何欧几里得在世时期所画的画像,所以现存的欧几里得画像都是出于画家的想象。此外,一些中世纪时期的作家经常把欧几里得与墨伽拉的欧几里得(一位受苏格拉底影响的哲学家)弄混。[6]

欧几里得的生平资料流传到现在的很少,而大部分关于欧几里得的资料都是来自公元450年时普罗克洛的评论,及公元320年帕普斯的评论,距欧几里得有几个世纪之久[7]

普罗克洛在他的《对几何原本的评论》(Commentary on the Elements)中简单的介绍了欧几里得。根据普罗克洛的说法,欧几里得属于柏拉图那一派,将《几何原本》集合在一起,这些著作原来是由柏拉图的学生(特别是欧多克索斯泰阿泰德欧普斯的腓力英语Philip of Opus等)所写的,普罗克洛认为欧几里得没有比他们年轻多少,不过因为阿基米德(公元前287-212年)有提到欧几里得,他应该有活到托勒密一世的年代。阿基米德文章中有一些明显引用欧几里得著作的段落,虽然后来发现是后人加入的,一般仍认为欧几里得写作的年代比阿基米德要早[8][9][10]

普罗克洛也提到一个和欧几里得有关的故事:托勒密一世问是否有比看《几何原本》更简单可以学习几何的方法。欧几里得说:“几何学无坦途。”[11]。不过有个有关亚历山大大帝和数学家曼纳克姆斯英语Menaechmus的故事,和这个有点像,因此欧几里得和托勒密一世的故事有些可疑[12]

帕普斯在约公元前247–222年,有简单的提到欧几里得:“阿波罗尼奥斯花了许多时间和欧几里得的学生在一起,也在那个时候养成思考的习惯。”[13][14]

因为在这个时期重要的数学家却没有生平资料,是很不寻常的事(欧几里得前后几个世纪的重要希腊数学家,都可以找到很多的生平资料),有些研究者认为其实没有欧几里得这个人,一般认定是他所写的作品其实是一群数学家以欧几里得为名所写,取名欧几里得的原因是为了纪念历史人物墨伽拉的欧几里得(类似一群法国数学家组成的尼古拉·布尔巴基),不过此论点尚未广为学者接受,可作为支持的证据也相当的少[9][15][16]

几何原本

俄克喜林库斯29号莎草纸英语Papyrus Oxyrhynchus 29,现存最早的几何原本残页之一,在俄克喜林库斯发现的,其年代约为西元后100年。插图和第2卷的命题5相同[17]

几何原本》(Elements)共有13卷,虽然其中的许多内容是来自早期的数学家,但欧几里得的贡献是将这些资料整理成单一的,有逻辑架构的作品,容易使用也容易参考,其中有严谨的数学证明系统,是后来2300年数学的基础[18]

《几何原本》原存最早的一些版本中没有提到欧几里得,大部分版本有提到“这些是来自忒翁英语Theon of Alexandria的教材”[19]。梵蒂冈所有的版本中没有提到作者。唯一说明欧几里得写了《几何原本》的历史记录只有普罗克洛在《对几何原本的评论》中提到欧几里得写了《几何原本》。

几何原本对于几何学数学科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论无理数理论等其他课题,例如著名的欧几里得引理和求最大公因数欧几里得算法。几何原本也说明完全数梅森质数的关系(欧几里得-欧拉定理)、质数有无限多个(欧几里得定理)、有关因式分解的欧几里得引理(导出了算术基本定理整数分解的唯一性)等。

欧几里得使用了公理化的方法。公理(Axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多二千年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。

欧几里得在《几何原本》中提到的几何系统后来简称为几何,长久以来视为唯一一种可能的几何方式,不过当数学家在19世纪发现非欧几里得几何后,上述的几何就称为欧几里得几何

著作

欧几里得制作正十二面体
位于牛津大学自然历史博物馆的欧几里得石像

除了《几何原本》之外,欧几里得至少另外五本著作流传至今。它们与《几何原本》一样,内容都包含定义及证明。

  • 给定量英语Data (Euclid)》(Data)研究几何问题中给定元素的性质和意义,内容与《几何原本》的前四卷有密切关系。
  • 《图形的分割》(On divisions of figures)现存拉丁文本,论述用直线将已知图形分为相等的部分或成比例的部分,内容与希罗(Heron of Alexandria)的作品相似。
  • 反射光学》(Catoptrics)论述反射光在数学上的理论,尤其论述形在平面凹镜上的图像。可是有人质疑这本书是否真正出自欧几里得之手,它的作者可能是亚历山大里亚的忒翁英语Theon of Alexandria
  • 《现象》(Phenomena)是一本关于球面天文学的论文,现存希腊文本。这本书与奥托里库斯(Autolycus of Pitane)所写的On the Moving Sphere相似。
  • 光学英语Euclid's Optics》(Optics)早期几何光学著作之一,现存希腊文本。这本书主要研究视觉问题的几何方面,叙述视线的入射角等于反射角等。

相关条目

参考

注脚

  1. ^ Bruno, Leonard C. Math and Mathematicians: The History of Math Discoveries Around the World. Baker, Lawrence W. Detroit, Mich.: U X L. 2003: 125 [1999]. ISBN 978-0-7876-3813-9. OCLC 41497065.
  2. ^ 公元前323年-公元前283年
  3. ^ Ball, W.W. Rouse. A Short Account of the History of Mathematics 4th. New York: Dover Publications. 1960年: 第50至62页. ISBN 0-486-20630-0.
  4. ^ Boyer, Carl B. A History of Mathematics 2nd. John Wiley & Sons. 1991年: 第100至19页. ISBN 0471543977.
  5. ^ Macardle, et al. (2008). Scientists: Extraordinary People Who Altered the Course of History.纽约:Metro Books.第12页
  6. ^ Heath (1956年) vol. I,第四页
  7. ^ Joyce, David. Euclid. Clark University Department of Mathematics and Computer Science. [1]页面存档备份,存于互联网档案馆
  8. ^ Proclus; Glenn Raymond Morrow. A Commentary on the First Book of Euclid's Elements. Princeton University Press. 1992: 88–. ISBN 0-691-02090-6.
  9. ^ 9.0 9.1 Euclid of Alexandria页面存档备份,存于互联网档案馆 引用错误:带有name属性“MCS”的<ref>标签用不同内容定义了多次
  10. ^ The MacTutor History of Mathematics archive.
  11. ^ Proclus, p. 57
  12. ^ Boyer, p. 96.
  13. ^ Heath (1956), p. 2.
  14. ^ Conic Sections in Ancient Greece. [2015-09-22]. (原始内容存档于2015-05-03).
  15. ^ The MacTutor History of Mathematics archive.
  16. ^ Jean Itard. Les livres arithmétiques d'Euclide. 1962.
  17. ^ Bill Casselman. One of the Oldest Extant Diagrams from Euclid. University of British Columbia. [2008-09-26]. (原始内容存档于2012-06-04).
  18. ^ Struik p. 51 ("their logical structure has influenced scientific thinking perhaps more than any other text in the world").
  19. ^ Heath (1981), p. 360.

书目

  • Euclid (Greek mathematician). Encyclopædia Britannica, Inc. 2008年 [2008-04-18]. (原始内容存档于2008-05-02).
  • Artmann, Benno (1999). Euclid: The Creation of Mathematics. New York: Springer. ISBN 978-0-387-98423-0.
  • Heath, Thomas. The Thirteen Books of Euclid's Elements vol.1. Dover Publications. 1956年 [1908年]. ISBN 0486600882.
  • Heath, Thomas L. (1981年). A History of Greek Mathematics, 2 Vols. New York: Dover Publications. ISBN 978-0-486-24073-2 / ISBN 978-0-486-24074-9.
  • Kline, Morris(1980年). Mathematics: The Loss of Certainty. Oxford: Oxford University Press. ISBN 978-0-19-502754-9.
  • 约翰·J·奥康纳; 埃德蒙·F·罗伯逊英语Edmund F. Robertson, Euclid, MacTutor數學史檔案 (英语)
  • Struik, Dirk J. A Concise History of Mathematics. Dover Publications. 1967年. ISBN 0486602559.

外部链接


本页面最后更新于2021-05-28 13:40,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器