万维百科

旋转曲面

曲线x=2+cos z的一部分绕着z轴旋转。

旋转曲面是一个平面曲线绕着一条直线(旋转轴)旋转所得到的曲面。

例子包括球面,由绕着其直径旋转而成,以及环面,由圆绕着外面的一条直线旋转而成。

面积

如果曲线由参数方程给出,其中,且旋转轴是轴,则旋转曲面的面积由以下的积分给出:

条件是非负。这个公式与古尔丁定理是等价的。

来自勾股定理,表示曲线的一小段弧,像弧长的公式那样。是这一小段的(重心的)路径。

如果曲线的方程是y = f(x),axb,则积分变为:

(绕着x轴旋转),
(绕着y轴旋转)。

这可以由以上的公式推出。

例如,单位半径的球面由曲线x(t) = sin(t),y(t) = cos(t)旋转而得,其中。所以,它的面积为:

对于半径为r的圆绕着x轴旋转所得的曲面,

参见

参考文献

  • Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 931-937, 1985.
  • Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 42, 1980.
  • Gray, A. "Surfaces of Revolution." Ch. 20 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 457-480, 1997.
  • Hilbert, D. and Cohn-Vossen, S. "The Cylinder, the Cone, the Conic Sections, and Their Surfaces of Revolution." §2 in Geometry and the Imagination. New York: Chelsea, pp. 7-11, 1999.
  • Isenberg, C. The Science of Soap Films and Soap Bubbles. New York: Dover, pp. 79-80 and Appendix III, 1992.

本页面最后更新于2021-05-02 08:38,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器