万维百科

截半立方体堆砌

截半立方体堆砌
HC A3-P3.png
Rectified cubic tiling.png
线架图
类型均匀堆砌
维度3
r{4,3} Uniform polyhedron-43-t1.png
{3,4} Uniform polyhedron-43-t2.svg
{3} Alchemy fire symbol.svg
{4} Kvadrato.svg
顶点图Rectified cubic honeycomb verf.png
长方体
施莱夫利符号r{4,3,4} or t1{4,3,4}
r{3[4]}
考克斯特记号英语Coxeter–Dynkin_diagramCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
类比截半正方形镶嵌
对称群
空间群Pm3m (221)
考克斯特群, [4,3,4]
纤维流形记号4:2
对偶多胞体双四角锥堆砌
特性顶点正英语vertex-transitive

在几何学中,截半立方体堆砌是一种欧几里得三维空间的半正堆砌,由截半立方体正八面体堆砌而成,是三维空间内28个半正密铺之一,其对偶多面体为双四角锥堆砌。

康威截半立方体堆砌cuboctahedrille[1],因为它可以借由立方体堆砌经过“截半”变换构造而来,也可以视为由截半立方体堆砌而得,但截半立方体无法单独堆砌,必须和其他多面体一起堆砌,而截半立方体堆砌是由截半立方体和正八面体共同堆砌而得。

表面涂色

对称性 [4,3,4]
[1+,4,3,4]
[4,31,1],
[4,3,4,1+]
[4,31,1],
[1+,4,3,4,1+]
[3[4]],
空间群 Pm3m
(221)
Fm3m
(225)
Fm3m
(225)
F43m
(216)
表面涂色 Rectified cubic honeycomb.png Rectified cubic honeycomb4.png Rectified cubic honeycomb3.png Rectified cubic honeycomb2.png
考克斯特符号英语Coxeter diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png
顶点图 Rectified cubic honeycomb verf.png Rectified alternate cubic honeycomb verf.png Cantellated alternate cubic honeycomb verf.png T02 quarter cubic honeycomb verf.png
顶点

对称性
D4h
[4,2]
(*224)
order 16
D2h
[2,2]
(*222)
order 8
C4v
[4]
(*44)
order 8
C2v
[2]
(*22)
order 4

结构

截半立方体堆砌可以被切割出一个截半六边形镶嵌的面,从截半立方体的六边形中心切割,创建了两个正三角帐塔。这部分的结构均匀,可用考克斯特记号CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png表示,符号为s3{2,6,3}。

Runcic snub 263 honeycomb.png

参考文献

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (包含11个凸半正镶嵌、28个凸半正堆砌、和143个凸半正四维砌的全表)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication参与编辑, 1995, ISBN 978-0-471-01003-6 [1]
    • (22页) H.S.M.考克斯特, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 半正空间镶嵌)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)

本页面最后更新于2021-05-27 01:02,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器