万维百科

微分同胚本文重定向自 微分同胚

数学中,微分同胚是适用于微分流形范畴的同构概念。这是从微分流形之间的可逆映射,使得此映射及其逆映射均为光滑(即无穷可微)的。

定义

对给定的两个微分流形,若对光滑映射,存在光滑映射使得,则称为微分同胚。此时逆映射是唯一的。

若在微分流形之间存在微分同胚,则称是微分同胚的,通常记为

对于流形,可采同样办法定义微分同胚之概念。

例子

考虑

此微分同胚可由下述映射给出:

与同胚的关系

对维度的流形,可证明同胚的流形必为微分同胚;换言之,此时流形上的拓扑结构确定了微分结构。在四维以上则存在反例,最早的构造是约翰·米尔诺的七维怪球,米尔诺更证明了七维球上恰有28种微分流形结构,它们都可表成某个在上的-丛。在1980年代,西蒙·唐纳森与迈克尔·哈特利·弗里德曼的证明在上有不可数个相异的微分结构。

外部链接


本页面最后更新于2021-05-24 14:56,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器