万维百科

径向集

数学中,给定线性空间上的一个集合,如果对于所有,存在,使得对任意,则称集合在点处是径向的(英语:radial)。[1]在几何上,这意味着,如果对任意,从发出朝向的线段落于中(线段长度非零但可以依赖于),则在点处是径向的。

所有使在该点是径向的的点的集合即为代数内部[1][2]所有使集合在该点是径向的的点通常被称为内点。[3][4]

集合吸收集当且仅当其在0点处是径向的。[1]一些作者使用径向集作为吸收集的同义词,他们称一个在0点处径向的集合为径向集。[5]

参考文献

  1. ^ 1.0 1.1 1.2 Jaschke, Stefan; Küchler, Uwe. Coherent Risk Measures, Valuation Bounds, and ()-Portfolio Optimization. 2000.
  2. ^ Nikolaĭ Kapitonovich Nikolʹskiĭ. Functional analysis I: linear functional analysis. Springer. 1992. ISBN 978-3-540-50584-6.
  3. ^ Aliprantis, C.D.; Border, K.C. Infinite Dimensional Analysis: A Hitchhiker's Guide 3. Springer. 2007: 199–200. ISBN 978-3-540-32696-0. doi:10.1007/3-540-29587-9.
  4. ^ John Cook. Separation of Convex Sets in Linear Topological Spaces (pdf). May 21, 1988 [November 14, 2012]. (原始内容存档 (PDF)于2019-02-27).
  5. ^ Schaefer, Helmuth H. Topological vector spaces. GTM 3. New York: Springer-Verlag. 1971. ISBN 0-387-98726-6.

本页面最后更新于2021-07-07 19:39,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器