万维百科

幂零矩阵

线性代数

向量 向量空间 行列式 矩阵

幂零矩阵(英语:nilpotent matrix)是一个n×n方块矩阵M,满足以下等式:

对于某个正整数q。类似地幂零变换是一个线性变换L,满足对于某个整数q

幂零矩阵是幂零元──一个更加一般的概念的特殊情况,不仅可以应用于矩阵和线性变换,也可以应用于环的元素。

例子

考虑以下的矩阵:

这是一个4×4的幂零矩阵的例子(实际上,这种形式的矩阵称为转移矩阵)。注意非零的超对角线。这个矩阵的特征为:

超对角线不断向右上角“移动”,直到完全消失,得到零矩阵

对应的幂零变换L : R4R4由下式定义:

有一个分类定理证明这是典型的:幂零矩阵与分块矩阵相似的,其对角线上的区块推广了这种类型,而其它区块为零。

性质

Mn×n的幂零矩阵。

  • 满足Mq = 0的最小整数q小于或等于n
  • 在代数封闭域上,矩阵M是幂零的,当且仅当它的所有特征值为零。因此,M行列式都为零,所以幂零矩阵必为奇异方阵
  • 假设AB是两个矩阵。如果A是可逆矩阵,则是幂零矩阵,当且仅当t无关。这是因为:
其中的特征值。

分类定理

以上的例子是典型的,这是因为以下的结果。每一个幂零矩阵都与以下的分块矩阵相似:

其中区块在超对角线上为一,在其它地方为零:

这可以从若尔当标准形,以及每一个与幂零矩阵相似的矩阵也是幂零的事实推出。

参考文献

  1. ^ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra, Vol. 56, No. 3

外部链接


本页面最后更新于2021-07-17 15:14,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器