万维百科

勒洛三角形本文重定向自 勒洛三角形

勒洛三角形是一个固定宽度的曲线图,以一个等边三角形为基础。边上的每个点到对应顶点的距离都是相等的。

勒洛三角形(英语:Reuleaux triangle),也译作莱洛三角形弧三角形,又被称为划粉形[1]曲边三角形,是除了圆形以外,最简单易懂的勒洛多边形,一个定宽曲线。将一个曲线图放在两条平行线中间,使之与这两平行线相切,则可以做到:无论这个曲线图如何运动,只要它还是在这两条平行线内,就始终与这两条平行线相切。这个定义由十九世纪的德国工程师Franz Reuleaux英语Franz Reuleaux命名。

绘制

如何绘制一个勒洛三角形
在正方形中滚动的勒洛三角形

使用一个圆规,画一个大小合适的圆弧

以同样的半径,以第一个圆弧上的一点画第二个圆弧。

以2个圆的一个交点为圆心,半径不变,做第三个圆弧。

通过勒贝格积分可以算出,勒洛三角是定宽曲线所能构成的面积最小的图形,其面积为,s为定宽宽度。

勒洛三角也是“除了圆形以外,还有什么形状的下水道盖不会掉入下水道?”这个问题的一个答案[2]

其他形状

三维空间

四个相交的球体,其中心为一个勒洛四面体

参见

备注

  1. ^ Theoni Pappas, 陈以鸿译. 《數學放輕鬆》. 台北县新店市: 世茂出版社. 2004: P.280. ISBN 9577766110.
  2. ^ Klee, Victor, Shapes of the future, The Two-Year College Mathematics Journal, 1971, 2 (2): 14–27, doi:10.2307/3026963.
  • Heinrich Guggenheimer (1977) Applicable Geometry, page 58, Krieger, Huntington ISBN 0-88275-368-1 .

相关资料


本页面最后更新于2021-06-28 19:54,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器