万维百科

凸集本文重定向自 凸集合

凸集
非凸集(凹集)

点集拓扑学欧几里得空间中,凸集(Convex set)是一个点集合,其中每两点之间的直线点都落在该点集合中。

凸集实例

  • 区间实数的凸集。
  • 依据定义,中空的圆形称为(circle),它不是凸集;实心的圆形称为圆盘(disk),它是凸集。
  • 凸多边形是欧几理得平面上的凸集,它们的每只角都小于180度。
  • 单纯形是凸集,对于单纯形的顶点集合来说,单纯形是它们的最小凸集,所以单纯形也是一个凸包
  • 定宽曲线是凸集。

凸集的延伸不等式定义

在度量几何中,琴生不等式(Jensen's inequality)为凸集给出一个最健全的解释,而不必牵涉到二阶导数

假设为在实或复向量空间的集。若对于所有和所有,有,则称凸集

简单而言,就是中的任何两点之间的直线段都属于。因此,凸集是一个连通空间

特殊凸集

特殊凸集是特别给了名称的凸集,它们可能是具有额外性质的凸集,或是在某种定义下的凸集(非一般定义中的凸集)。

具有额外性质的凸集

  • 绝对凸集:若既是凸集又是平衡集,则称绝对凸的。

在某种定义下的凸集

  • 星形凸集:若集中存在一点,使得由中任何一点的直线段都属于,则称星形域星形凸集。星形域是简单连通的。

性质

是凸集,对于任意,及所有非负数满足,都有 。这个向量称为凸组合

非欧几何的凸集

对于非欧平面,可用测地线来取代在欧几理德凸集的定义内直线段。

参见


本页面最后更新于2021-06-13 08:39,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器