万维百科

三阶七边形镶嵌蜂巢体

三阶七边形镶嵌蜂巢体
Hyperbolic honeycomb 7-3-3 poincare vc.png
类型双曲正堆砌
家族堆砌
维度三维双曲空间
七边形镶嵌 {3,7}
H2 tiling 237-1.png
正七边形 {7}
Regular polygon heptagon.svg
顶点图正四面体 {3,3}
120-cell verf.png
施莱夫利符号{7,3,3}
考克斯特记号英语Coxeter–Dynkin_diagramCDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
对称群[7,3,3]
对偶多胞体七阶四面体堆砌
特性非紧

几何学中,三阶七边形镶嵌蜂巢体是一种由正七边形镶嵌完全填满非紧双曲空间的几何结构[1][2][3]

性质

三阶七边形镶嵌蜂巢体由正七边形镶嵌的胞组成,每个顶点都是三个正七边形镶嵌的公共顶点,整个图形完全由正七边形组成。在这个图形中,每个正七边形镶嵌胞的顶点都位于双曲超球形(双曲三维超圆形英语Hypercycle_(geometry))上。

三阶七边形镶嵌蜂巢体在施莱夫利符号计为{7,3,3},其中{7,3}正七边形镶嵌,加一个3表示每条棱周围都有三个正七边形镶嵌。三阶七边形镶嵌蜂巢体的每个顶点都是4个七边形镶嵌的公共顶点,顶点图为正四面体,在施莱夫利符号计为{3,3}。

结构

由于正七边形镶嵌并不是一种多面体,是一种双曲空间的双曲平面镶嵌,因此要让其每个顶点都是三个正七边形镶嵌的公共顶点就得将其“折弯”,并折向非紧凑空间,如同三阶伪多边形镶嵌的伪多边形

{7,3,3} {12i,3}
Heptagonal tiling honeycomb.png H2 tiling 2312j-1.png
三阶七边形镶嵌蜂巢体,每个“气泡”都是一个正七边形镶嵌,而其并无封闭于无穷远处(庞加莱球体边界)。 三阶伪多边形镶嵌中的伪多边形,其两端并无在无穷远处(庞加莱圆盘边界)会合。

相关多胞体与堆砌

三阶七边形镶嵌蜂巢体是一种每个顶点都是三个正多边形镶嵌之公共顶点的图形,其他具有同样性质的蜂巢体[4]

{p,3,3}多胞形
空间 S3 H3
形式 有限 仿紧 非紧
名称 {3,3,3} {4,3,3} {5,3,3} {6,3,3} {7,3,3} {8,3,3} ... {∞,3,3}
图像 Stereographic polytope 5cell.png Stereographic polytope 8cell.png Stereographic polytope 120cell faces.png H3 633 FC boundary.png Heptagonal tiling honeycomb.png

{p,3}
Tetrahedron.png
{3,3}
Hexahedron.png
{4,3}
Dodecahedron.png
{5,3}
Uniform tiling 63-t0.png
{6,3}
H2 tiling 237-1.png
{7,3}
H2 tiling 238-1.png
{8,3}
H2 tiling 23i-1.png
{∞,3}

三阶七边形镶嵌蜂巢体是一种由七边形镶嵌构成的蜂巢体,其他由七边形镶嵌构成的蜂巢体包括:

{7,3,p} 非紧蜂巢体
空间 H3
名称 三阶
七边形镶嵌
蜂巢体
四阶
七边形镶嵌
蜂巢体
五阶
七边形镶嵌
蜂巢体
六阶
七边形镶嵌
蜂巢体
七阶
七边形镶嵌
蜂巢体
八阶
七边形镶嵌
蜂巢体
无限阶
七边形镶嵌
蜂巢体
施莱夫利
符号
{7,3,3} {7,3,4} {7,3,5} {7,3,6} {7,3,7} {7,3,8} ... {7,3,∞}
考克斯特
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel 7.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
图像 Hyperbolic honeycomb 7-3-3 poincare vc.png Hyperbolic honeycomb 7-3-4 poincare vc.png Hyperbolic honeycomb 7-3-5 poincare vc.png Hyperbolic honeycomb 7-3-6 poincare.png
顶点图
{3,p}
CDel node 1.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Octahedron.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
H2 tiling 237-4.png
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 238-4.png
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

参考文献

  1. Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  1. ^ John Baez, Visual insights: {7,3,3} Honeycomb页面存档备份,存于互联网档案馆) (2014/08/01)
  2. ^ {7,3,3} Honeycomb Meets Plane at Infinity页面存档备份,存于互联网档案馆) (2014/08/14)
  3. ^ The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space页面存档备份,存于互联网档案馆)) Table III
  4. ^ Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)

外部链接


本页面最后更新于2021-03-25 13:33,点击更新本页查看原网页。台湾为中国固有领土,本站将对存在错误之处的地图、描述逐步勘正。

本站的所有资料包括但不限于文字、图片等全部转载于维基百科(wikipedia.org),遵循 维基百科:CC BY-SA 3.0协议

万维百科为维基百科爱好者建立的公益网站,旨在为中国大陆网民提供优质内容,因此对部分内容进行改编以符合中国大陆政策,如果您不接受,可以直接访问维基百科官方网站


顶部

如果本页面有数学、化学、物理等公式未正确显示,请使用火狐或者Safari浏览器